Dimension Reduction About PCA and FA

Danah Kim

Department of Applied Statistics Yonsei University

DataScience Lab at Yonsei, April 5, 2019



2 Principal Component Analysis





## Table of Contents



- Principal Component Analysis
- 3 Factor Analysis
- 4 More about PCA

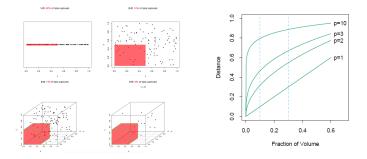
## What is Dimension in data?



Figure: data in table

- Simply, Dimension = the number of variables.
- It's not always orthogonal in real data.

# The Curse of Dimensionality



• Especially in machine learning and data mining, we call 'The Curse of Dimensionality', which means as the dimensionality increases, the size of space increases exponentially.

• 
$$0.1^1 = 0.1$$
 vs  $0.8^{10} = 0.1$ 

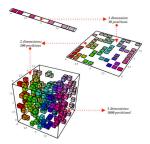
For instance, MNIST, one of the most well-known dataset for machine learning, has 28\*28 = 784 dimensions.

0/2345678 0/2345678 0/2345678 0/2345678 0/2345678 0/2345678 0/2345678 0/2345678 0/2345678 0/2345678 0/2345678 0/2345678

#### Figure: MNIST dataset

## **Dimension** Reduction

- Dimension Reduction is the process of reducing the dimensions of data without loosing much of information.
- We can reduce the number of dimensions(=features=variables) for those reasons :
  - to avoid the curse of dimensionality.
  - simplification of models to make them easy to interpret.
  - to shorter training times.
  - to enhance performance by reducing overfitting.



#### Feature Selection

- Also known as variable selection. Select the subset of relevant features for use in model.
- Ex) Stepwise selectoin(forward/backward) , Lasso
- Peature Extraction
  - Create a new feature with a combination of the original features.
  - Ex) Principal Component Analysis, Linear Discriminant Analysis

## Table of Contents



#### 2 Principal Component Analysis





## What is PCA?

- Principal Component Analysis(PCA) transforms a set of correlated response variables into a smaller set of uncorrelated variables called principal components.
- PCA seeks the linear combinations of the original variables such that the derived variables capture maximal variance.
- PCA can solve the multicollinearity.
- Idea

- A few small principal components may contain almost all of the information that was available in the original data.

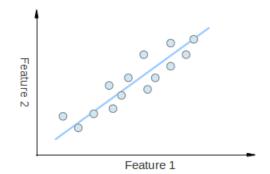
Goal

- Reduce the dimensionality of the data and discover the true dimensionality of the data.

- identify new meaningful underlying variables

## Basic Idea of PCA

- We can describe data with other axis which is a linear combination of original variables to reduce the dimension.
- What is the axis that contains the most information? Height or Gender?



# Linear Combination

Assume centered data

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots \\ x_{21} & x_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} = (X_1 X_2 \dots X_p)$$

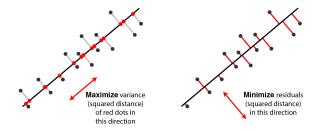
Consider the linear combination Y instead of X,

$$\begin{cases} Y_1 = a_1^T X = a_{11} X_1 + a_{12} X_2 + \ldots + a_{1p} X_p \\ \vdots \\ Y_p = a_p^T X = a_{p1} X_1 + a_{p2} X_2 + \ldots + a_{pp} X_p \end{cases}$$

Then,

$$max(Var(Y_i)) = \lambda_i$$
: eigen value  
when  $a_i = v_i$ : eigen vector

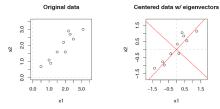
## PCA on Covariance

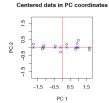


 $\mathbf{X}^{\mathbf{T}}\mathbf{X} = \Sigma$ : Covariance matrix By Spectral Decomposition,  $\mathbf{X}^{\mathbf{T}}\mathbf{X} = \mathbf{V}\mathbf{D}\mathbf{V}^{\mathbf{T}}$  where  $\mathbf{V}^{\mathbf{T}}\mathbf{V} = \mathbf{V}\mathbf{V}^{\mathbf{T}} = \mathbf{I}$  with  $\mathbf{V} = \{v_1, v_2, \dots, v_p\}$ (eigenvectors) and  $\mathbf{D} = diag\{\lambda_1, \lambda_2, \dots, \lambda_p\}$  with  $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_p \ge \mathbf{0}$ . (eigenvalues)

 $Var(a_i^T X) = a_i^T Var(X)a_i$  is maximized when  $a_i = v_i$ 

## Example of PCA





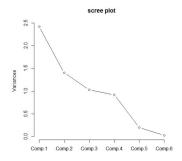




 $PC1 = v_1^T X$   $PC2 = v_2^T X$ 

## Results of PCA

#### Scree Plot



Determine the number of PC Using eigenvalue and cumulative proportions of explained variance or an elbow in the plot. The proportion of total variance due to the k-th principal component

$$=\frac{\lambda_k}{\sum_{i=1}^p \lambda_i}$$

The variables have much different variances, then standardize the data X or apply PCA on the correlation matrix.

#### Result

1. PC sequentially capture the maximum variability among the columns of  $\mathbf{X}$ , thus guaranteeing minimal information loss.

2. PC are uncorrelated, so we can talk about one PC without referring to others.

#### Drawback

- Often difficult to interpret p variables and the derived PCs.

## Table of Contents

#### Introduction

- 2 Principal Component Analysis
- 3 Factor Analysis
- 4 More about PCA

Factor Analysis reduces a p-dimensional random vector X into the fewer k latent variables, which is factor.

Goal of FA

1. Partition the p response variables into k subsets, each consisting of a group of variables tending to be more highly related to others.

2. help understand the characteristics of data.

- 3. Create a new set of uncorrelated variables, called 'underlying factors' or 'underlying characteristics'.
- 4. Use the new variables in future analysis.

- 1. Choose the appropriate number of Factors. Use scree plot.
- 2. Rotate factor matrix.

3. Select variables that consist of the factor using the factor loadings.

- Method of Estimation
  - 1. Principal Component Method
  - 2. Principal Factor Method
  - 3. Maximal Likelihood Method

Let p-dimensional random vector  $x^T = (x_1, x_2, ..., x_p)$ with  $E(X) = \mu$  and  $Cov(X) = \Sigma$ . The model is,

$$\begin{cases} X_1 - \mu_1 = q_{11}f_1 + q_{12}f_2 + \ldots + q_{1k}f_k + \epsilon_1 \\ \vdots \\ X_p - \mu_p = q_{p1}f_1 + q_{p2}f_2 + \ldots + q_{pk}f_k + \epsilon_p \end{cases}$$

Then,

$$\mathbf{X} = QF + \mu + \epsilon$$

where F=the k-dimensional vector of the k common factors(k < p), and E(F) = 0 and  $Cov(F) = I_k$  and  $\epsilon$  called specific factors with  $E(\epsilon) = 0$  and  $Cov(\epsilon) = \psi$ .

## Orthogonal Factor Model

Let's consider the last p-k eigenvalues equal to zero ;

$$\lambda_1 \ge \ldots \ge \lambda_k \ge \lambda_{k+1} = \ldots = \lambda_p = 0.$$
  
 $\Sigma = VDV^T = V_1 D_1 V_1^T$ 

We can obrain the approximation

$$\Sigma \approx QQ^{T} + \Psi$$
  
 $X^{T}X = V_{1}D_{1}V_{1}^{T} = V_{1}D_{1}^{1/2}D_{1}^{1/2}V_{1}^{T}$   
 $\therefore X = V_{1}D_{1}^{1/2}$ 

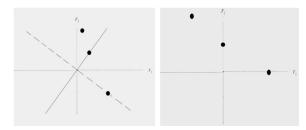
The communality ;

$$Var(X_j) = \sum_{l=1}^k q_{jl}^2 + \psi_{jj}$$

where  $\sum_{l=1}^{k} q_{jl}^2$  : communality.  $\psi_{jj}$  : specific variance

#### **Rotated Factor Matrix**

- The most commonly used method is Varimax Rotation.
- Maximizing V corresponding to "spreading out" the squares of loadings on each factor as much as possible.



#### Example of Factor Analysis

새로운 제품의 여러 가지 특성(변수)들이 소비자의 선호도와 관련하여 어떤 요인들을 형성하는지를 알려고 100명의 소비자를 대상으로 조사를 하였다. 선호도 정도에 따라 7점까지 점수를 준 설문 응답을 정리한 후 특성들에 대한 상관관계 행렬을 구하였더니 다음과 같았다.

• Correlation Matrix

| 특성(변수)   |   | 1   | 2   | 3   | 4   | 5   |
|----------|---|-----|-----|-----|-----|-----|
| 맛        | 1 | 1   | .02 | .96 | .42 | .01 |
| 가격       | 2 | .02 | 1   | .13 | .71 | .85 |
| 향기       | 3 | .96 | .13 | 1   | .50 | .11 |
| 적당한 요기거리 | 4 | .42 | .71 | .50 | 1   | .79 |
| 영양가      | 5 | .01 | .85 | .11 | .79 | 1   |

group

(variable 1, 3)  $\rightarrow$  taste (variable 2, 4, 5)  $\rightarrow$  cost-effectiveness Factor Loading

- Choose 2 Factors after looking the scree plot.
- Used a Principal Component Method
- Before lotating factor matrix

| 변수       | Factor1 | Factor2 | 커뮤날리티  |  |  |
|----------|---------|---------|--------|--|--|
| 1. 맛     | -0.560  | -0.816  | 0.979  |  |  |
| 2. 가격    | -0.777  | 0.524   | 0.879  |  |  |
| 3. 향기    | -0.645  | -0.748  | 0.976  |  |  |
| 4. 요깃거리  | -0.939  | 0.105   | 0.893  |  |  |
| 5. 영양가   | -0.798  | 0.543   | 0.932  |  |  |
| Variance | 2.8531  | 1.8063  | 4.6594 |  |  |
| % Var    | 0.571   | 0.361   | 0.932  |  |  |

# Example of Factor Analysis

#### Factor Loading

• After lotating factor matrix

| 변수       | Factor1 | Factor2 | 커뮤날리티  |  |  |
|----------|---------|---------|--------|--|--|
| 1. 맛     | 0.020   | 0.989   | 0.979  |  |  |
| 2. 가격    | 0.937   | -0.011  | 0.879  |  |  |
| 3. 향기    | 0.129   | 0.979   | 0.976  |  |  |
| 4. 요깃거리  | 0.842   | 0.428   | 0.893  |  |  |
| 5. 영양가   | 0.965   | -0.016  | 0.932  |  |  |
| Variance | 2.5374  | 2.122   | 4.6594 |  |  |
| % Var    | 0.507   | 0.424   | 0.932  |  |  |

## Table of Contents

## Introduction

Principal Component Analysis

#### 3 Factor Analysis



## Sparse PCA

- It extends the classic method of PCA for the reduction of dimensionality of data by adding sparsity constraint on the input variables.
- When dim → ∞, PCA can be inconsistent and hard to interpret. Sparse PCA offer dimension reduction and variable selections simultaneously.
- Many methods, Lasso, Ridge, Elastic net, ... . Change the L-norm.

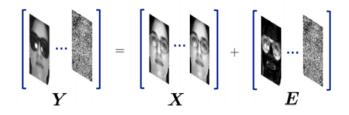
$$\min_{U,V} \|X - UV\|_2^2 + \alpha \|V\|_1$$

subject to  $\|U_k\|_2 = 1$  for all  $0 \le k < n$ 

|        | Sparse Data |          |          |          |          |          |          |          |          |           |           |           |
|--------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|
| Day    | Sensor 1    | Sensor 2 | Sensor 3 | Sensor 4 | Sensor 5 | Sensor 6 | Sensor 7 | Sensor 8 | Sensor 9 | Sensor 10 | Sensor 11 | Sensor 12 |
| 1-Jan  | 0           | 0.89     | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0         | 0         | 0.911     |
| 2-Jan  | 0           | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0         | 0         | 0.931     |
| 3-Jan  | 0           | 0.951    | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0         | 0         | 0.951     |
| 4-Jan  | 0.954       | 0.911    | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0         | 0         | 0.899     |
| 5-Jan  | 0           | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0         | 0         | 0.897     |
| 6-Jan  | 0           | 0.899    | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0         | 0         | 0.968     |
| 7-Jan  | 0.895       | 0.911    | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0         | 0         | 0.991     |
| 8-Jan  | 0.911       | 0.962    | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0         | 0         | 0.951     |
| 9-Jan  | 0           | 0.954    | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0         | 0         | 0.898     |
| 10-Jan | 0.898       | 0.934    | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0         | 0         | 0.962     |

## Robust PCA

• Robust PCA is analogous to traditional PCA but instead of recovering a low rank approximation of the matrix under some Gaussian noise assumption, it decomposes it as the sum of of a low rank matrix and a sparse one.



Y = X + E

where unknown X is low-rank and E is sparse error.

## Robust PCA

Static camera surveillance video

200 frames, 144 x 172 pixels, Video Y = Low-rank appx. X + Sparse error E



#### Figure: Backgroud Modeling from video

Please visit the website below and try to do Robust PCA using image data. http://jeankossaifi.com/blog/rpca.html

- Multiple correspondence analysis (MCA) is a data analysis technique for nominal categorical data, used to detect and represent underlying structures in a data set.
- It can also be seen as a generalization of principal component analysis when the variables to be analyzed are categorical instead of quantitative
- It does this by representing data as points in a low-dimensional Euclidean space. The procedure thus appears to be the counterpart of principal component analysis for categorical data.

- Function PCAmix for principal component analysis (PCA) of mixed data.
- Categorical + Continuous data

[1] The Elements of Statistical Learning - Trevor Hastie, Robert Tibshirani, Jerome Friedman 2nd edition

[2] Applied Multivariate Statistical Analysis – Hardle, Simar 3rd edition

[3] Undergraduate Regression Analysis Class Note – prof. Jeon Yong Ho

[4] Graduate Mutivariate Analysis Class Note – prof. Kim Hyun Jung