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What is Dimension in data?
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Figure: data in table

@ Simply, Dimension = the number of variables.
@ It's not always orthogonal in real data.
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The Curse of Dimensionality
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@ Especially in machine learning and data mining, we call 'The
Curse of Dimensionality’, which means as the dimensionality
increases, the size of space increases exponentially.
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The Curse of Dimensionality
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Figure: MNIST dataset
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Dimension Reduction

@ Dimension Reduction is the process of reducing the dimensions of
data without loosing much of information.

@ We can reduce the number of dimensions(=features=variables) for
those reasons :
- to avoid the curse of dimensionality.
- simplification of models to make them easy to interpret.
- to shorter training times.
- to enhance performance by reducing overfitting.
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Dimension Reduction

© Feature Selection
e Also known as variable selection. Select the subset of relevant
features for use in model.
e Ex) Stepwise selectoin(forward/backward) , Lasso
@ Feature Extraction
o Create a new feature with a combination of the original

features.
e Ex) Principal Component Analysis, Linear Discriminant

Analysis
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What is PCA?

@ Principal Component Analysis(PCA) transforms a set of
correlated response variables into a smaller set of
uncorrelated variables called principal components.

@ PCA seeks the linear combinations of the original variables
such that the derived variables capture maximal variance.
@ PCA can solve the multicollinearity.

@ Idea
- A few small principal components may contain almost all of
the information that was available in the original data.

o Goal
- Reduce the dimensionality of the data and discover the true
dimensionality of the data.
- identify new meaningful underlying variables
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Basic Idea of PCA

@ We can describe data with other axis which is a linear
combination of original variables to reduce the dimension.

@ What is the axis that contains the most information? Height
or Gender?
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Linear Combination

Assume centered data

X11 X12
X=| %1 X2 ... [=(XX...X,)

Consider the linear combination Y instead of X,
Y1 = alTX = a1 Xy + appXo + ...+ a1pXp
Then,
max(Var(Y;)) = X; : eigen value

when a; = v; : eigen vector
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PCA on Covariance

L]
Maximize variance

Minimize residuals
(squared distance) (squared distance)
of red dots in in this direction

this direction

XX = ¥ : Covariance matrix

By Spectral Decomposition,

XTX = VDVT where VIV = VT =T with V= {1}, 1, ..
(eigenvectors) and D = diag{X1. X2, ... A\p} with

A1 > X2 > ... > Xp > 0. (eigenvalues)

L Up}

Var(al'X) = a! Var(X)a; is maximized when a; = v;
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PC2

Example of PCA
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Results of PCA

Scree Plot
scree plot
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Determine the number of PC
Using eigenvalue and cumulative
proportions of explained variance
or an elbow in the plot.

The proportion of total variance
due to the k-th principal
component

X
== —
Zi:l >\i
The variables have much
different variances, then

standardize the data X or apply
PCA on the correlation matrix.
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Results of PCA

@ Result
1. PC sequentially capture the maximum variability among
the columns of X, thus guaranteeing minimal information

loss.
2. PC are uncorrelated, so we can talk about one PC without

referring to others.

@ Drawback
- Often difficult to interpret p variables and the derived PCs.
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What is Factor Analysis?

Factor Analysis reduces a p-dimensional random vector X into the
fewer k latent variables, which is factor.

@ Goal of FA
1. Partition the p response variables into k subsets, each
consisting of a group of variables tending to be more highly
related to others.
2. help understand the characteristics of data.
3. Create a new set of uncorrelated variables, called
‘underlying factors’ or ‘underlying characteristics’.
4. Use the new variables in future analysis.
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How to do Factor Analysis

1. Choose the appropriate number of Factors. Use scree plot.

2. Rotate factor matrix.
3. Select variables that consist of the factor using the factor

loadings.

@ Method of Estimation
1. Principal Component Method
2. Principal Factor Method
3. Maximal Likelihood Method
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Orthogonal Factor Model

Let p-dimensional random vector xT = (x1, x2, ..., Xp)
with E(X) = 1 and Cov(X) = %.
The model s,

Xi—um=quh+quph+...+qufi +a

Xp—tp=qpfi + Grfo+ ...+ Gpifi + €p

Then,
X=QF +u+e

where F=the k-dimensional vector of the k common factors(k <
p), and E(F) = 0 and Cov(F) = I and ¢ called specific factors
with E(e) = 0 and Cov(e) = .
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Orthogonal Factor Model

Let’s consider the last p-k eigenvalues equal to zero ;
M2 22X 2 X1 = .. =2p=0.
Yy =vDvl =D v
We can obrain the approximation
Y~ QQl +w
X'X = wiD v = D{*D;/* V!
X =WD?
The communality ;

k
var(Xj) = _ qi + v

=1

k
where Zq]z, : communality. pj;  : specific variance
1=1
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Rotated Factor Matrix

@ The most commonly used method is Varimax Rotation.

@ Maximizing V corresponding to “spreading out” the squares
of loadings on each factor as much as possible.

F
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Example of Factor Analysis
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@ group
(variable 1, 3) — taste
(variable 2, 4, 5) — cost-effectiveness
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Example of Factor Analysis

Factor Loading
@ Choose 2 Factors after looking the scree plot.
@ Used a Principal Component Method

@ Before lotating factor matrix

B Factor1 |Factor2 |HFE2IE]
1. gt -0.560 -0.816 0.979
24 -0.777 0.524 0.879
3. 8| -0.645 -0.748 0.976
4. 231H2l -0.939 0.105 0.893
5 G2t -0.798 0.543 0.932
Variance 2.8531 1.8063 4.6594
% Var 0.571 0.361 0.932
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Example of Factor Analysis

Factor Loading

@ After lotating factor matrix

B Factor1 Factor2 HF L ElE]

1. ot 0.020 0.989 0.979
2. JA 0.937 -0.011 0.879
3. 8| 0.129 0.979 0.976
4. R21He 0.842 0.428 0.893
5. gD} 0.965 -0.016 0.932
Variance 2.5374 2.122 4.6594
% Var 0.507 0.424 0.932
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Sparse PCA

@ It extends the classic method of PCA for the reduction of
dimensionality of data by adding sparsity constraint on the
input variables.

@ When dim — oo, PCA can be inconsistent and hard to
interpret. Sparse PCA offer dimension reduction and variable
selections simultaneously.

@ Many methods, Lasso, Ridge, Elastic net, ... . Change the
L-norm.

min | X — V|3 + o[V
UV

subject to ||Ugll2=1 forall0<k<n

Sparse Data

Day [Sensor1 [sensor2 [sensor3 [sensord [sensor 5 [sensor6 [Sensor7 [Sensor8 [Sensor 5 [sensor 10[Sensor 11[Sensor 12
Lan of o o 0| o of o of of osu]
2Jan of o of o o ol o of o of of o5
3Jan EEER of o o o o of 9 of of oss1]
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Robust PCA

@ Robust PCA is analogous to traditional PCA but instead of
recovering a low rank approximation of the matrix under
some Gaussian noise assumption, it decomposes it as the
sum of of a low rank matrix and a sparse one.

Y=X+E

where unknown X is low-rank and E is sparse error.
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Robust PCA

Static camera

surveillance video
Video Y = Low-rankappx. X + Sparse error F/

200 frames,

144 x 172 pixels,

Significant foreground
motion

o - ES
|

Figure: Backgroud Modeling from video
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Robust PCA

Please visit the website below and try to do Robust PCA using
image data.
http://jeankossaifi.com/blog/rpca.html
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MCA

@ Multiple correspondence analysis (MCA) is a data analysis
technique for nominal categorical data, used to detect and
represent underlying structures in a data set.

@ It can also be seen as a generalization of principal component
analysis when the variables to be analyzed are categorical
instead of quantitative

@ It does this by representing data as points in a
low-dimensional Euclidean space. The procedure thus
appears to be the counterpart of principal component
analysis for categorical data.
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@ Function PCAmix for principal component analysis (PCA) of
mixed data.

@ Categorical + Continuous data
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